Transposition of cyanobacterium insertion element ISY100 in Escherichia coli.

نویسندگان

  • Akihiro Urasaki
  • Yasuhiko Sekine
  • Eiichi Ohtsubo
چکیده

The genome of the cyanobacterium Synechocystis sp. strain PCC6803 has nine kinds of insertion sequence (IS) elements, of which ISY100 in 22 copies is the most abundant. A typical ISY100 member is 947 bp long and has imperfect terminal inverted repeat sequences. It has an open reading frame encoding a 282-amino-acid protein that appears to have partial homology with the transposase encoded by a bacterial IS, IS630, indicating that ISY100 belongs to the IS630 family. To determine whether ISY100 has transposition ability, we constructed a plasmid carrying the IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible transposase gene at one site and mini-ISY100 with the chloramphenicol resistance gene, substituted for the transposase gene of ISY100, at another site and introduced the plasmid into an Escherichia coli strain already harboring a target plasmid. Mini-ISY100 transposed to the target plasmid in the presence of IPTG at a very high frequency. Mini-ISY100 was inserted into the TA sequence and duplicated it upon transposition, as do IS630 family elements. Moreover, the mini-ISY100-carrying plasmid produced linear molecules of mini-ISY100 with the exact 3' ends of ISY100 and 5' ends lacking two nucleotides of the ISY100 sequence. No bacterial insertion elements have been shown to generate such molecules, whereas the eukaryotic Tc1/mariner family elements, Tc1 and Tc3, which transpose to the TA sequence, have. These findings suggest that ISY100 transposes to a new site through the formation of linear molecules, such as Tc1 and Tc3, by excision. Some Tc1/mariner family elements leave a footprint with an extra sequence at the site of excision. No footprints, however, were detected in the case of ISY100, suggesting that eukaryotes have a system that repairs a double strand break at the site of excision by an end-joining reaction, in which the gap is filled with a sequence of several base pairs, whereas prokaryotes do not have such a system. ISY100 transposes in E. coli, indicating that it transposes without any host factor other than the transposase encoded by itself. Therefore, it may be able to transpose in other biological systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro transposition of ISY100, a bacterial insertion sequence belonging to the Tc1/mariner family

The Synechocystis sp. PCC6803 insertion sequence ISY100 (ISTcSa) belongs to the Tc1/mariner/IS630 family of transposable elements. ISY100 transposase was purified and shown to promote transposition in vitro. Transposase binds specifically to ISY100 terminal inverted repeat sequences via an N-terminal DNA-binding domain containing two helix-turn-helix motifs. Transposase is the only protein requ...

متن کامل

Transposition of IS2 into the hemB gene of Escherichia coli K-12.

Genetic studies of the hemB gene in Escherichia coli have resulted in the recovery of both stable and unstable mutant strains. The stable strains have been shown to result from large deletions. This study demonstrates that unstable strains result from the insertion of transposable element IS2 primarily into the 5' region of the structural gene; the instability results from precise excision of t...

متن کامل

ISEcp1-mediated transposition of qnrB-like gene in Escherichia coli.

A novel QnrB-like plasmid-mediated resistance determinant, QnrB19, was identified from an Escherichia coli clinical isolate from Colombia. Its gene was associated with an ISEcp1-like insertion element that did not act as a promoter for its expression. Using an in vitro model of transposition, we showed that the ISEcp1-like element was able to mobilize the qnrB19 gene.

متن کامل

IS186 insertion at a hot spot in the lon promoter as a basis for lon protease deficiency of Escherichia coli B: identification of a consensus target sequence for IS186 transposition.

The radiation sensitivity of Escherichia coli B was first described more than 50 years ago, and the genetic locus responsible for the trait was subsequently identified as lon (encoding Lon protease). We now show that both E. coli B and the first reported E. coli K-12 lon mutant, AB1899, carry IS186 insertions in opposite orientations at a single site in the lon promoter region and that this sit...

متن کامل

Rates of transposition in Escherichia coli

The evolutionary role of transposable elements (TEs) is still highly controversial. Two key parameters, the transposition rate (u and w, for replicative and non-replicative transposition) and the excision rate (e) are fundamental to understanding their evolution and maintenance in populations. We have estimated u, w and e for six families of TEs (including eight members: IS1, IS2, IS3, IS4, IS5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 184 18  شماره 

صفحات  -

تاریخ انتشار 2002